Affine Insertion and Pieri Rules for the Affine Grassmannian

نویسندگان

  • THOMAS LAM
  • MARK SHIMOZONO
چکیده

We study combinatorial aspects of the Schubert calculus of the affine Grassmannian Gr associated with SL(n,C). Our main results are: • Pieri rules for the Schubert bases of H∗(Gr) and H∗(Gr), which expresses the product of a special Schubert class and an arbitrary Schubert class in terms of Schubert classes. • A new combinatorial definition for k-Schur functions, which represent the Schubert basis of H∗(Gr). • A combinatorial interpretation of the pairing H(Gr)×H∗(Gr)→ Z. These results are obtained by interpreting the Schubert bases of Gr combinatorially as generating functions of objects we call strong and weak tableaux, which are respectively defined using the strong and weak orders on the affine symmetric group. We define a bijection called affine insertion, generalizing the Robinson-Schensted Knuth correspondence, which sends certain biwords to pairs of tableaux of the same shape, one strong and one weak. Affine insertion offers a duality between the weak and strong orders which does not seem to have been noticed previously. Our cohomology Pieri rule conjecturally extends to the affine flag manifold, and we give a series of related combinatorial conjectures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affine Stanley symmetric functions for classical types

We introduce affine Stanley symmetric functions for the special orthogonal groups, a class of symmetric functions that model the cohomology of the affine Grassmannian, continuing the work of Lam and Lam, Schilling, and Shimozono on the special linear and symplectic groups, respectively. For the odd orthogonal groups, a Hopf-algebra isomorphism is given, identifying (co)homology Schubert classes...

متن کامل

Equivariant Pieri Rule for the homology of the affine Grassmannian

An explicit rule is given for the product of the degree two class with an arbitrary Schubert class in the torus-equivariant homology of the affine Grassmannian. In addition a Pieri rule (the Schubert expansion of the product of a special Schubert class with an arbitrary one) is established for the equivariant homology of the affine Grassmannians of SLn and a similar formula is conjectured for S...

متن کامل

Affine charge and the k-bounded Pieri rule

We provide a new description of the Pieri rule of the homology of the affine Grassmannian and an affine analogue of the charge statistics in terms of bounded partitions. This makes it possible to extend the formulation of the Kostka–Foulkes polynomials in terms of solvable lattice models by Nakayashiki and Yamada to the affine setting. Résumé. Nous proposons une nouvelle description de la règle...

متن کامل

Schubert Polynomials for the Affine Grassmannian of the Symplectic Group

We study the Schubert calculus of the affine Grassmannian Gr of the symplectic group. The integral homology and cohomology rings of Gr are identified with dual Hopf algebras of symmetric functions, defined in terms of Schur’s P and Q functions. An explicit combinatorial description is obtained for the Schubert basis of the cohomology of Gr, and this is extended to a definition of the affine typ...

متن کامل

Skew Littlewood–Richardson Rules from Hopf Algebras

We use Hopf algebras to prove a version of the Littlewood–Richardson rule for skew Schur functions, which implies a conjecture of Assaf and McNamara. We also establish skew Littlewood–Richardson rules for Schur P and Q-functions and noncommutative ribbon Schur functions, as well as skew Pieri rules for k-Schur functions, dual k-Schur functions, and for the homology of the affine Grassmannian of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006